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- . APPROXIMATE HYDRODYNAMIC DESIGN OF A FINITE SPAN HYDROFOILY

By A. N. Vladimirov

SUMMARY

Some problems concerning the motions of a hydrofoil are discussed.
The results of theoretical investigations on motions of different bodies
under a free surface of a heavy perfect fluid are revised, and for all
cases diagrams of forces acting on moving bodies are given. The problem
solved by Lamb for the motion of a circular cylinder and several problems
solved during the last three years in the Central Aero-Hydrodynamical
Institute (Moscow) are discussed. The latter are: +the work by L.
Sretensky on the motion of a vortex, the work by N. Kotchin on the mo-
tion of an arbitrary contour of streamline form (in the present article
only a particular case of motion of a circular cylinder with a circula-
tion around it is discussed), and the work by M. Keldysh and M.
Lavrentiev on the motion of a plate and a circular aerofoil.

The analytical solution of the problem of moticn of a plate is
applied to an approximate hydrodynamic design of a hydrofoil, and on the
basis of this solution diagrams are plotted allowing the determination of
the 1lift and wave resistance of an infinite span hydrofoil during its
motion in a fluid without friction.

Further, some considerations of the viscosity effect are given and
a method of taking into account the finite span of the hydrofoil is
suggested where an attempt is made at an approximate consideration of the
effect of a free surface on the downwash behind a hydrofoil.

Further, some descriptions and experimental data for a hydrofoil
tested in the CAHI tank are given and a comparison of theoretical with
experimental data is made.

The described work forms a basis for an approximate hydrodynamic
design of a finite span hydrofoil for small angles of incidence and for
depths of immersion equaling and somewhat exceeding the chord length.

*Priblizhennyi gidrodinamicheskii raschet podvodnogo kryla konechnogo
razmakha. Central Aero-Hydrodynamical Institute, Report 311, 1937.
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INTRODUCTION

The hydrodynamic supporting forces act only on the lower surface of
a planing hoat. The supporting wings of airplanes are subject to the
action of pressure forces on the lower surface and to suction forces on
the upper surface. The motion of a planing profile inclined at a small
angle of attack and the motion of the same body in infinite flow are
considered here. The analogy established by Wagner (ref. 1) exists
between the two flows considered.

From this analogy, with an accuracy up to second-order smallness,
it follows that a planing foil during its motion is acted upon by a lift
force A, a spray-forming resistance r, and the sum of all other resist-
ances R, while a vane moving in an infinite flow is acted upon by a 1ift
force 2A and the sum of all resistances 2R (all measured in kg); that
is, 1t has no spray-forming resistance. The hydrodynamic efficiency of
the planing foil k5 1is therefore equal to

A
k=577 (2)

and the efficiency kp of the foil entirely submerged is equal to

A .
ko = R (b)
that is,
kp > kj (c)

Investigations of the problem of increasing the speed of boats and
lowering the power required by mounting hydrofoils on the bottom have
been carried on abroad for some time. Investigations along this line
are also being conducted in this country. The efficiency of hydrofoils
decreases in the presence of the frontal resistance of the supports to
which the vanes are attached. It is therefore desirable that during the
motion of the boat the hydrofoils be located sufficiently near the free
water surface. Because of the nearness of the free surface the hydro-
dynamic characteristics of the hydrofoll change; they do not follow the
laws of motlon of the same hydrofoil in an infinite fluid. The need
therefore arises for an availsble method for the hydrodynamic computa-
tion of a hydrofoil on the basis of which the designer, by a computational
procedure, could obtain the hydrodynamic polar curves of the foil selected
for its motion at various depths of submersion. It is customary for the
designer to have avallable the aerodynamic polar curves for the hydrofoil

of interest.

If a body of streamlined shape, for example, a wing, moves in an
infinite real fluid, the effect of the gravity force which shows up in
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the Archimedean law of buoyancy can very simply be taken into account and
only the effect of the forces of inertia and viscosity need be considered.

There then holds true the well-known Reynolds law of similitude on the

basis of which the forces exerted by the fluid on the wing or body are
expressed by the formulas

Lift force A = CypSV
Frontal resistance R = CXpSV2

[ NACA Translator's note: The more generally used coefficients today
(1951) are twice the magnitude of the coefficients used in this report,
since p dis now replaced by p/2.

where the nondimensional coefficients Cy and Cx are functions of the
Reynolds number and the shape and position of the body. The scheme of

an infinite flow of a weightless liquid is adopted in problems in which
the flight dynamics of an alrplane at large distance from the ground are
considered. In studying the motion of a wing near the free surface of

the water, it is necessary to take intc account the action of the force

of gravity on the fluid, because the wave disturbances of the free surface
behind the wing alter in a fundamental way the hydrodynamics of the lat-
ter. It is known that in this case of motion, the forces exerted on the
wing by the water are expressed by the formulas given. The nondimensional
coefficlents Cy and Cx, however, will in this case be functions not

only of the Reynolds number but also of the Froude number. In the for-
eign literature on theoretical hydrodynamics there is very little infor-
mation on the motions of bodies under the free surface of a heavy fluid.
There 1s a particular lack of information on the problems of the motion
of underwater wings (hydrofoils), and the papers available refer only to
the circular cylinder. In regard to the history of this problem, a gquo-
tation is presented from the work of L. N. Sretensky (ref. 2):

"The problem here studied (the flow of a heavy fluid about an immersed
circular cylinder)l is presented in literature. The problem was first
posed by Keldysh in 1904 and was first solved by Lamb (ref. 3). The
solution, given by Lamb, is approximate and consists of the addition to
the potential of the infinite flow of a correction term, the object of
which is to satisfy the condition at the surface. The introduction of
this term, however, disturbs the conditions of flow about the cylinder.

"The next step in the solution of the problem was taken by Havelock
(ref. 4). Making use of the methods of conformal mapping, Havelock
extended the equation of Lamb by the addition of new terms with the pur-
pose of setting up the conditions of flow about the cylinder. The solu-
tion of Havelock is also approximate, but the method indicated by him

lThe remark in parentheses is ours.
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can give an unlimited approximation to the complete solution of the prob-
lem if the extreme complexity of the formulas is disregarded. And fur-
ther on, Lamb and Havelock, in presenting their spproximate formulas,
entirely omitted the velocity circulation about the cylinder.”

There 1s still another series of papers by Havelock in which con-
sidered motions which give rise to the formation of waves are considered,
but only the solution for the wave resistance is sought. IExperimental
work on hydrofoils has been carried out abroad, but the vanes were consid-
ered only in combination with various types of boats. No test data on
isolated hydrofoils have been reported.

For the last three years work on the problem of the motion of bodies
under the surface of a heavy fluid has made considerable progress at the
CAHT. Approximate solutions have been given of the problems of the mo-
tion of a circular cylinder, a cylinder with velocity circulation about
it, a thin plate, a circular disk, and, finally, an arbitrary profile of
streamline shape. The workers at the CAHI test tank conducted tests in
1935 on the isolated underwater hydrofoil. The foil was towed at various
angles of attack under various loads and measurements were made of the
hydrodynamic forces (the 1ift and frontal drag) acting on the foil. The
theoretical and experimental data available have been used in the present
paper for investigating the essential character of the hydrodynamics of
hydrofoils and for working out a method of the approximate hydrodynamic

solution.

BRIEF REVIEW OF RESULTS OF THEORETICAL WORK

Only the theoretical investigations of interest for present purposes
are congidered. The feature common to all these investigations is the
statement of the problem and the assumptions which make the solution ap-
proximate but permit reducing it to practical formulas. The authors con-
sider the rectilinear and uniform motion of a body in a heavy, ideal, incom-
pressible fluid at a certain depth from its free surface. Below the free
gsurface the fluid is infinite in extent. The flow is assumed irrotational
and most frequently plane-parallel. The boundary condition for the free
surface is satisfied on the line of the undisturbed free surface. The
velocities of the fluid particles on the free surface are so small that
their squares may be neglected. Since the fluid is an ideal one and the
flow possesses a potential, the frontal resistance encountered by the
moving body is the wave resistance. If the fluid is infinite there is
no wave resistance. In all the solutions given by the authors, the change
in the 1lift force on the body with change of depth of submersion is set
up and in each individual case the law of this change is given. Individ-
ual problems will now be considered.
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Lamb considered the motion of a circular cylinder of radius r at
the distance h from the free surface. The flow at a large distance
from the cylinder has the velocity V; there is no circulation about the
cyllnder The same case of motion was considered by M. V. Keldysh (ref.
5). The formulas obtained by Keldysh are the following:

A = -4rpa? I<‘2}E\) +<%> V%-F%(-\;gz—) - (V%)e v Eil <\2ri1>: (1)
i / ]
, -2
R = 4n2pa2 <é%> e V2 (2)

where
A 1ift of cylinder, kg
R wave resistance, kg
a Vr2
v velocity of flow at infinity, m/sec
r radius of cylinder, m
d diameter of cylinder, m
h distance from level of undisturbed surface, m
o - mass density of fluid, kg secZ/m*
g acceleration of gravity, m/sec2
7t ratio of circumference of circle to diameter
Eil integral exponent of function (refs. 6 and 7)

The same notation will be used in what follows. The system of co-
ordinates connected with the body is chosen in the usual mamner; that is,
the positive half-axis of ordinates y is directed upward and the posi-
tive half-axis of abscissas x is to the right. The flow past the cyl-
inder is from left to right; the cylinder itself is gtationary and its
center has the coordinates x = 0, y = -h. The x-axis is placed along
the free surface of the undisturbed fluid. As may be seen from formula
(1), the 1ift force of the cylinder, for infinite submersion, is equal to
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zero; that is, there is no velocity circulation about the cylinder. As
the cylinder nears the free surface there first appears an insignificantly
small positive lift force which then goes over into a negative one. The
negative 1lift force increases monotonically in absolute value with de-
creasing depth. This is confirmed by the following considerations:

2gh _ o (a)
e
There follows from formula (1)
2 g3
A= -tmpa® = f£(T) (e)
v
where
1 1 1 -T .
f(T) ——?'*‘;E'l";g -e Eil(T) (f)
Since
2 . B
T 1 1
Eil(T)=C+lnT+i+§2_1+§ Tt - ()

where C 1s the Euler constant, it is clear that for small =<
£(t) > 0 (h)

To small values of T there correspond small values of the depth
h; therefore near the free surface the 1ift force of the cylinder is
negative.

For very large 7T there is the asymptotic equation

T
e 1 2! 3! .
Eil(ﬁc)=?(l+'_t+,t—2.+'t—5+' . -+> (l)

Substituting this value of Eith) in the expression for f(7)
gives

from which i1t is clear that for large <

f(t) < 0 (k)
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Hence, for sufficiently large depth, the 1lift force of the cylinder
is positive.

In order to study the behavior of the function f£(7T),
T

£1(t) = e (r) -2-L .2 _3 (2)

must be found and the function g(t) = e £'(T)

8(7) = By, () -e* <% rEr 53 (m)

must be investigated. The range of small T is considered first. Since
for small T, Eile) is of the order of 1n (T), it is clear that

g(t) <0 (n)
and that
g'(t) = &' <f% + %é\ >0 (o)

Hence g(7t) increases monotonically in the range of small T.

The range of very large T 1is now considered. For this range,

T 3 41! 5t
g(’t)_e <‘T—4+;-'-5—+%€+...+> (P)
that is,
g(t) >0 (a)

Hence g(t), and therefore f'(T), are negative in a certain interval
0<T<7ty and positive for T>T45 that i1s, f(T) at first decreases and

then increases.

In figure 1 is plotted a curve which shows that at a very large
depth the 1lift force of the cylinder is positive and has a maximum at
T = 3.8, that is, at_the depth h = 3.8 V2/2g; at v = 2.8, that is, at
the depth h = 2.8 V2/2g, the 1lift force of the cylinder becomes zero,
and with further decrease of the depth it becomes negative.

Nondimensional magnitudes are used to construct the curves charac-
terizing the hydrodynamic forces acting on the cylinder. The following
concepts are introduced:
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F o — (r)

A2gd
the ratio
da
k=~E

and. the nondimensional coefficients of the 1lift and wave resistance of
the cylinder

A R
Cop = —=3 Crn = (s)
rh pdV2

-2
2 -2 4 6~ EE— F‘2>
1 3 - - -
Cyp= -3z |K +KF +1F  -F e E11<T (3)
2 P
" -6  k
Cbh=3zF e (4)

The curves of the 1ift coefficients of the cylinder as a function
of the ratio h/d for two values of the Froude number are constructed
on the basis of formula (3) as shown in figure 2. The position of tan-
gency of the cylinder to the undisturbed free surface corresponds to the
ratio h/d = 0.5. As may be seen from the constructed curves the coeffi-
clents of the 1lift force directed downward attain thelr largest values
near the free surface, exceeding the maximum values of the lift coeffi-
clents of airfoils. As has been stated previously, the curves must
intersect the axis of abscissas. The points of intersection were not
shown on the figure, since for V/ 2gd = 1.5, Cyy, = O only for
h/d = 6.2; and for V/4/2gd = 5.0, Cyp =0 for" h/d = 70.

The maxima of the positive 1ift coefficients are vanishingly small.

The curves of the coefficients of the wave resistance of the cyl-
inder as a function of the Froude number for various ratios d/h are
constructed on the basis of formula (4) in figure 3.

The position of contact of the cylinder relative to the undisturbed
free surface corresponds to the ratio d/h = 2. Each curve of wave
resistance coefficients has one maximum, the position of which is deter-
mined by the ratio

F = 1/4/3x
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The wave resistance itself for h = constant has a maximum with
respect to the velocity, and the position of this meximum is given by

V= Agh

Far behind the cylinder the equation of the wave surface has the
fornm
gh
2 Ty
y o - e o VU gy BX ., (5)

v2 v2

The maximum of the wave resistance corresponds to the maximum height
of the wave which, as 1s easily seen, occurs at V = A/gh. The velocity
of propagation of the waves is equal to V and the length of the wave is

A= ZﬂVE/g

With this, the description of the results obtained for the motion of
a circular cylinder without circulation is concluded.

The problem of the motion of a circular cylinder has also been solved
by Sretensky. In it he introduced the circulation about the cylinder.
The approximate solution obtained by the author Jjustifies the conclusion
that a cylinder wlth circulation produces the same flow disturbance as a
vortex placed at the same depth. This result was obtained because for
the degree of accuracy assumed by the author the terms which characterize
the motion of the cylinder without circulation were rejected. Since the
results of the work of N. E. Kotchin who retained the terms of Lamb in
the problem solved by Sretensky are to be presented, the solution of
Sretensky will be considered as the solution of the problem of the motion
of a vortex near the free surface of a cylinder. The formulas obtained
by Sretensky have the form

- g%-ll
2 1 g v 2gh
A=-pr'V—-pr — - == Eq —-—) (6)
4nh ﬂvz 1 V2
_ 2gh

2 2

r v
R = pg (v) e _ (7)

where T in square meters per second is the circulation about the vortex
in its motion in an infinite flow.

The system of coordinates is chosen as in the preceding problem.
The positive value of the circulation I corresponds to the counter
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clockwise rotation (if the velocity of the approaching flow is directed
from the left to the right of the observer). Hence, the sign of the
Joukowsky 1lift force (pI'V) is opposite to the sign of the circulation.
For constructing the graphs characterizing the hydrodynamic forces acting
on the vortex, we go over, as in the preceding problem, to the nondimen-
sional magnitudes F and k. But for this purpose we first replaced,
for convenience, the vortex by the supporting wing having the same cir-
culation. On the basis of the Joukowsky theorem on the 1lift of a wing
and the formula expressing the 1lift in terms of the nondimensional coef-
ficient Cy, we then obtain

= CybV = nabV (t)

where b 1is the chord of the wing in meters and « 1is the angle of
attack of the wing in radians.

After all transformations have been made, formulas (6) and (7) give

-2 T
o1 1.2 - <F‘2
A+p - >|
=2k -ZF e E;: \=— 8
(ah,) 4 2 i, Nk /! (8)
o _p?
rh 1 _-2 k
oz ~z% ¢ (9)

where F = V/./2gb and k = b/h.

The curves characterizing the change of the excess 1lift force of
the wing, that is, the total 1lift after subtraction of the Joukowsky
1ift, are constructed as a function of the ratio h/b for two Froude
numbers on the basis of formula (8) in figure 4. The constructed curves
show that the free surface of the fluid gives rise to the appearance of
an additional 1ift force (besides the Joukowsky force), the direction of
which does not depend on the sign of the circulation (as is clearly seen
from the structure of formula (6)). For small ratios h/b this addi-
tional 1lift force is directed downward; it then passes through zero and
becomes positive. After forming a positive maximum it asymptotically
approaches zero. On the basis of formula (9) there are constructed on
figure 5 the curves characterizing the change in the coefficients of
total resistance of the wing as a function of the Froude number for
various values of the ratio b/h. Each curve has one maximum, the posi-
tion of which is determined by the ratio F = 1/A/k.

The wave resistance itself, as a function of the velocity, does not
have a maximum and increases with increase in the velocity, asymptotically
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approaching a constant value. This occurs because for a wing the circu-
lation is proportional to the velocity only if the angle of attack and
the chord are constant. If, however, the motion of a vortex is consider-
ed and the fact that the circulation about it I = constant is taken
into account, the wave resistance, as a function of the velocity, will
have a maximum, the position of which is determined by the relation

V = A/Zgh

Far behind the vortex, the equation of the wave surface is of the
form

- &b
2T Ve . 8X

The maximum of the wave resistance corresponds to the maximum of the
wave height, which, as is easily seen, occurs for V = 2gh. The veloc-
ity of propagation of the wave is equal to V and the wavelength

A= ZnVZ/g.

With this the description of the results obtained by L. N. Sretensky

for the motion of a vortex is concluded.

N. E. Kotchin (ref. 8) gave general formulas for the hydrodynemic
forces acting on profiles of arbitrary shape in a flow and selected the
particular case of the motion of a cylinder of radius r with velocity
circulation TI' about it. The formulas obtained by him for this partic-
ular case have the form

2gh

Ve 2gh
By (2E2)] -
1\ye

_ 2gh
2 2 2
sz L - & e v Eil <E§E) -pIV % <E;> + Zgr -

3 .2
- amalpy (L) + /1y 8 L. 1 /e\" (&
A= plV -4ra®p <2h> \28) 3z Tz (32 72) S

4rh ﬂVZ V2

2gh ]

2.2 vyl \
tert . Vg (%} (10)

v L A\y /Jl
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_ 2gh 2gh 2gh
3 2 2 vz 2,27 2

The system of coordinates is chosen as in the preceding problems,
but the direction of motion is opposite to the others. The sign of the
Joukowsky 1lift force therefore agrees with the sign of the circulation.
If in formulas (10) and (11) T is set equal to O, there remain only
terms not depending on T, and the formulas agree with formulas (1) and
(2) for the forces acting on the cylinder without circulation. If in
formulas (10) and (11) r is set equal to O, there remain the terms not
depending on r and the formulas agree with formulas (6) and (7) for the
forces acting on a vortex.

The hydrodynamic forces acting on a cylinder with circulation will
be described in somewhat greater detail. Formula (10) for the lift force
may be written in the following form:

A=QFV+AT+AP+AI‘F (12)

where pIV 1s the Joukowsky lift force, A, 1is the 1lift force of a cyl-
inder of radius r without circulation (the same as by formula (1)), and
Ap is the lift force of a vortex (the same as by formula (6)), and

[ 2gh :

2r\é  2gré  4gfré ) v Zghi

S - == E; _E_[ (w)
Veh v 1 \V J

that is, the 1lift forée depending simultaneously on the radius of the

cylinder and on the circulation about it.

1
AI‘T = -pl'V B

From the preceding, the variations of the forces A, and Ap are
known. For very large depths of submersion of the cylinder, the force
A.r has the same direction as the Joukowsky 1lift force; while for small
depths it has the opposite direction.

For an explanation of thisg, it is necessary to consider the sign of
the brackets in the expression for App.

Setting
2gh
ve

ieads to an investigation of the function
2
2T2

£(t) = =5+ £ - e By (D) (w)
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It is evident that, for small =,

f(r) >0 e ()

since Eilﬁr) is of the order of 1n(T).

For large <, the asymptotic formula
et 1L, 2 3! .
Eil(T)ﬂ—T—<1+;—c-+——+-—+...+> ()

is used to obtain

1 21 3!
f(T)=—E,-E—2—_T_3_;Z—.-. (Z)

so that
f(t) <0 (a')
Forming the derivative f'(T) and investigating the function 4
g(t) = e¥f'(1) show that f£'(T) < O in a certain interval 0 < T <<
and f'(t) >0 for < >7ty5. Hence f(t) at first decreases and then
increases, having a negative minimum.

Formula (11) for the wave resistance may be written in the form

R = R, + Rp + Rpp (13)

where

wave resistance of cylinder of radius r without circulation (same
as by formula (2))

Ry

Rp wave resistance of a vortex (same as by formula (7))

2gh
2.2 -
4npgtrerl 2
er‘"‘—_p"\%——'e v (bl)

and the wave resistance depends simultaneously on the radius of the cyl-
inder and on the circulation about it. For negative circulation the last
part of the wave resistance RrI‘ is also negative, and therefore the wave
resistance of a cylinder with positive circulation is greater than the
wave resistance of a cylinder with negative circulation. From formula
(11) it also follows that under certain conditions of motion of the cyl-
inder at a finite depth its wave resistance may be equal to zero. This
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will evidently occur when the wave behind the cylinder will have a height
equal to zero. Since the problem is solved on the basis of the linear
theory of waves, the equation of the waves behind a cylinder with circu-
lation can be obtalned by taking the sum of the amplitudes of the waves
behind a cylinder without circulation and behind a vortex. The right
sides of equations (5) and (9a) are combined to obtain the equation of
the waves behind a cylinder with circulation:

_gen
2 V2 anrz . gX
YV = - —_— =
v Q‘+ 5 sin 2 , (14)

The condition of motion for which the wave resistance of a cylinder
with circulation is equal to zero is obtained by assuming the amplitude

y = 0.

2
- _ angr
r v

The same relation could have been obtained directly if the right
side of expression (11) were set equal to zero. It is necessary to
remark, however, that this condition does not give anything of practical
value because it entirely fails to correspond to the real conditions of
motion, at least in that the circulation T, and therefore the 1lift force,

is negative.

In figure 6 the curves of the 1lift force and wave resistance of a
cylinder of radius 0.1 meter with circulation T = 0.25 square meter per
second are constructed as a function of the submersion h for constant
velocity of motion V = 6 meters per second. The forces A and R are
represented by their component parts. In figure 7 analogous curves are
constructed for the same cylinder but with negative circulation,

I' = -0.25 square meter per second. The forces Ap, Ar, and A.r on

these curves do not become zero because the zZero points lie at a depth
greater than 1 meter. The curves are given as an illustration of what has
been saild concerning the forces acting on a cylinder with circulation.
With this, the description of the results obtained by N. E. Kotchin for
the motion of a cylinder with circulation is complete.

The formulas for the hydrodynamic forces acting on a cylinder with
circulation may be used to find the forces acting on a foil of chord b
at angle of attack o moving with velocity V at depth h. For this
purpose, the wing 1s replaced by a cylinder of diameter equal to the
chord of the foll multiplied by o. The motion of the foil is considered
under such small angles of attack that in the formulas for the forces it
is possible to neglect the terms containing o of degree higher than the
second. Substituting in formulas (10) and (11) the values 4 = ab and
I' = nabV gives the formulas for the 1lift and wave resistance of a foil:



W e o= s w0l

NACA TM 1341 15

_2gh

' 2
A= mopbV? {1 - o b _bg . ve g (281 (15)
4h VZ i1 VZ

_ 2gh
2
R = nZafpgb? e v (16)
In these formulas only the terms depending on the circulation about
the foil were retained, that is, the possiblity of neglecting the terms
with degree of « higher than the second justifies replacing the foil by
a vortex. If the motion of the foll is considered at somewhat greater
angles of attack, when in the formulas for the forces it 1s possible to
neglect only the terms containing o of degree higher than the third,
then formulas (10) and (11) after substitution of d = ab and T = nobV

give

_ 2gh
- 2 b _bg . vE 5 (2gh
A = nopbV 1l - a Yy 72 e Ell 72 -
_ 2gh
ghe  2vén vt 1\v2
i, E%E _ 2gh
2
R = n2alpgb? e ¥+ nladpglbd i% e V (18)
A%

In these formulas only the Lamb terms are rejected. The rejected
terms will be retained when it is necessary to take into account the
fourth power of o3 that is, the motion of a wing having a large value of
boe 1s considered.

The last paper to be presented is that of Keldysh and Lavrentiev
(ref. 9) on the motion of a thin contour under the free surface of a heavy
fluid. The circulation consists of a system of vortices replacing the
contour. The distribution of the vortices 1is such that one of the crit-
ical points is located at the rear edge of the contour. The circulation
is therefore determined, and the hydrodynamic forces acting on the contour
in its motion in the flow are expressed in terms of the geometric param-
eters defining the dimensions and position of the foil, that is, in terms
of its chord and the angle of attack. The formulas obtained by the authors
for the 1ift force and the wave resistance of a plane foil have the form




16 NACA TM 1341

2gh ) . - 4gh
-T2 2 2 =
A= nopbV? (1 - IR V0 DT 8D, X gib R
s 16h 4V%h v
2 2 2gh . _ 2gh
v 2
Y o W on (2 o|f -2 Vo (2
2v 1\y v 1\y
2gh _ 4gh
2 R 21,2 vl
Y (a4 ZgR) e VB L HED oV Ei, <§§%> (19)
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and the simplified formulas
_ 2gh _ 2gh
2 ngb V@ b 28 _ VZ 2gh
A= T[CLpr l -—=-¢ Q| m—— - —=— e B ok =i (21)
2gh
T2
R = nfafogb? e ¥ (22)

Formulas (19) and (20) entirely agree with the formulas obtained if
the aforementioned general sclution of N. E. Kotchin on the motion of a
contour of arbitrary shape is applied to the case of the plane foil.

Expressions (19) and (20) for the forces acting on the foil are
approximate since they were obtained on the basis of the linear theory of
waves, but they are, of course, closer approximations than the formulas
(15) to (18) which were obtained by replacing the foil by a circular cyl-
inder with circulation. This is explained by the fact that a cylinder
with circulation is a system of a double source and vortex concentrated
at one point, and no account is taken of the extension of the foil in
the direction of the chord.
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The expression for the forces acting on the foil, replaced by a
system of vortices, is used for the approximate hydrodynamic computation
of an underwater foil having infinite span. The 1ift force will be com-
puted by formula (19) and the wave resistance by the simplified formula
(22) which was obtained by replacing the wing by a vortex. The computa-
tion of the wave resistance by the more accurate formula (20) is of
practically no advantage in view of the smallness of the terms which
render it different from formula (22). Before the computation itself is
presented, the difference is discussed between formula (18) of the wave
registance of a foil derived by replacing the wing by a cylinder with
circulation and formula (21), cbtained from the condition of replacing
the foil by a system of vortices. On the basis of formula (18), the
expression for the coefficient of the wave resistance of a foll replaced
by a cylinder with circulation is

Cpp = Mraz + Nras (23)
where
2 r?
MT = Ez——- F_z (S] k (24)
) _F?
Ny = F*e K (25)

It is evident that, for all values of the Froude number and the
ratio b/h,

Mp> 0 and Np> O

Hence, with the coefficient of the wave resistance considered as a
function of the angle of attack,

Crpla) > Cpp(-a) (e)

that is, for a wing replaced by a cylinder with circulation, the wave
resistance for a positive angle of attack is always greater than for a
negative angle of attack. On the basis of formula (20), an expression

for the coefficlients of the wave resistance of a foil replaced by a system

of vortices is
Cpp = Mol + Na® (26)

where
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If as before

[a

zi__.:.t (dl)

<

the sign of the brackets in the expression for N.(28) always agrees with
the sign of the expression

£(t) = T + 41e” " Eil('r) -2 (28a)

Therefore
| Con(@) > Cpp(=) 1 £(v) > 0 (e")
Cppla) < Cpp(-w) 1f £(T) < 0 (£')

Formula (28) is used as a basis for constructing the curve of f£(%)
on figure 8. However, in both cases the effect of the terms N, 1is

very small.

Three series of hydrodynamic polars of a hydrovane are constructed
on the basis of formulas (19) and (22) on figure 9 to indicate the gen-
eral form of the hydrodynamic forces acting on the foil in its motion
near the free surface of an ideal fluid. Each series corresponds to a
definite constant Froude number. The different polars of a single series
correspond to different values of the ratio b/h. The dotted curves pass
through the points of the same angles of attack. For all Froude numbers
an increase of the ratio b/h (which for comstant b corresponds to a
decrease in the depth of submersion) gives rise to a decrease in the
absolute values of the 1ift coefficients and an increase in the wave
resistance coefficients. The coefficient C,} does not depend on the
sign of the angle of attack since the additonal terms were neglected,
while Cy; for a negative angle of attack is always greater in absolute
value than it is for a positive angle. The effect of an increase in the
Froude nunmber is to decrease the coefficients of the wave resistance of
the foll while increasing the coefficients of the 1lift force in absolute
value. This completes the review of results of theoretical work on the
motion of bodies under the free surface of a heavy fluid.
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CONSTRUCTION OF COMPUTATIONAL GRAPHS FOR MOTION OF A
R FOIL IN A PLANE-PARALLEL FLOW OF AN IDEAL FLUID

Formulas (19) and (22) are applied to the determination of the 1ift
force and wave resistance of hydrofolls. For this purpose the nondimen-
sional 1ift coefficient Cyp and wave resistance Cyrn are employed.
From formulas (19) and (22{,

Cyp = na(M - Na) (29)
2gh
T2
b v
Cpp = 72q? §§ e (30)
'
where
_ 2gh _ 4gh 2gh
2 2 2 24212 2 2p2 T 42
M=1-“—§]9eV -bz-gbz +“g4beV +—g-—bzeV Es Zéih\
v 16h®  4V°h v 2v N2 )
(31)
_ 2gh 2gh
b 2gb _ y@ 2gh\  mgb? 2gh V2
V=2n -2 © P \§z) " wen BT © ¥
v 1 \v 4Veh v
5 4gh
4nizb . 2§h (32)
v 11 \v

The question arises as to whether formulas (29) and (30), derived
for plates, may be applied to the arbitrary profiles of hydrofoils. It
is evident that they may more reliably be used for the computation of thin
symmetrical profiles. In general, in the computation of each profile
having a cross section different from that of plates, it is necessary to
remember the following: In expression (29) the factor wno is the coeffi-
cilent of the 1lift force of any profile in its motion in an ideal fluid
for h = «». Formula (29) may therefore be written in the form

Cop = cy_,(M - Na) (33)

yh

In the computation of definite profiles for Cy, 1t is necessary to
take not the magnitude o, but the wind tunnel resllts for this profile,
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the 1ift coefficients having first been computed for infinite span. 1In
this manner the shape of the profile will be approximately taken into
account. The section devoted to the consideration of the effect of the
viscosity of the fluld will discuss thls further.

Formula (30) for the coefficient of wave resistance may be repre-
sented in the form:

_ 2gh
2.
Crh = Cyzoo %—g e v (54)

The Cy2e does not represent the magnitude nzaz, but the square of
the actual resistance coefficient of the wing of infinite span. Graphs
were constructed for the convenlient and rapid application of formulas
(33) and (34) to the hydrodynamic computation of the hydrofoils. The
magnitudes M and N are plotted as functions of the Froude number on
the basis of formulas (31) and (32) for various values of the ratio b/h
(figs. 10 and 11) to aid in computing the 1lift coefficients. To compute
the coeffilcients of the wave resistance, the curves Crh/Cyzm were con-
structed on the basis of formula (34) also as a function of the Froude
number for various ratios b/h (fig. 12). The variations of the mag-
nitudes F and k in the constructed graphs were taken in ranges which
permitted obtaining the 1ift force and the wave resistance of hydrofoils
of infinite span for all cases of motion of practical Iinterest. The
graphs constructed on figures 10, 11, and 12 representing formulas (33)
and (34) thus permit obtaining approximately the 1ift force and wave re-
sistance of a folil of infinite span moving near the free surface of an
ideal fluid provided the 1lift coefficient for the motion of the wing in
an infinite flow is known (e.g., from wind tunnel test data) .

Effect of Viscosity of Fluid

A method for taking into account the effect of the viscosity of the
fluid is now considered. The 1lift force of a foil in its motion in a
real fluid depends little on the viscosity of the fluid since the 1ift of
the foil 1s entirely determined by the potential circulatory flow about
it. The viscosity appears to be only one of the factors giving rise to
the circulation (ref. 10). The lift of the foil may therefore be obtained
by the classical methods of hydrodynamics without introducing any correc-
tions for the viscosity. A confirmation of this statement may be found
in the comparison of the theoretical and experimental results on the
determination of the 1ift of the wing. Betz (ref. 11), for example,
carried out a computation of the pressures on the surface of wings of the
Joukowsky type on the basis of the potential flow of an ideal fluid about
the wing. He also made a comparison between his obtained results and
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experimental data for the same wings. Good agreement was obtained. The
slight increase of the theoretical 1ift force above that actually obtained

.1s explained as caused by a separation of the flow which occurs at the

upper surface of the wing not far from its trailifig edge snd tlis somewhat
lowers the total pressure on the wing. All that has been said relative
to the small dependence of the magnitude of the 1ift force of the wing on
the viscosity of the fluid refers to the motion in an infinite flow. In
the motion of the wing near a free surface, however, the effect of the
viscosity on the 1lift force may likewise be regarded as practically
absent because the change in the 1ift of the wing in its motion at a
finite depth is brought about by a different pressure distribution on the
wing different from the distribution which occurs in the motion at in-
finite depth (and gives the Joukowsky theorem). The other pressure dis-
tribution is due to the fact that the wave disturbances of the fluid
remain behind and is not connected with the viscosity. It is true that
in a real fluid the wave disturbances are damped, but this damping may be
neglected for the case of water.

In the preceding section it was stated that Cyw does not represent
the magnitude =na but rather the result of wind tunnel tests on the foil.
With this understood, the change in the 1ift of the wing due to the effect
of the viscosity in its motion in an infinite flow is taken into account.
The fact that no added corrections are made for the effect of the viscos-
ity on the 1lift of the wing means only that the effect of the free sur-
face on the 1ift is not connected with the viscosity. Thus in computing
the 1ift force of a hydrofoil moving in a real fluid it is permissible to
use the formula obtained for an ideal fluid without introducing any cor-
rections for the viscosity except interchanging wa with the magnitude
Cye~ obtalned experimentally.

Accounting for the viscosity of the fluid for a certain total frontal
resistance of the hydrofoil must be considered. For the present, the
well-known considerations for the case of motion of a wing in an infinite
flow are adduced. If the fluid is an 1ldeal one, the foil during lts mo-
tion is not subject to any frontal resistance, since it is known that in
a potential flow the pressure at the forward part of the wing is equal in
magnitude to the pressure at the after part. By a potential flow is here
meant a nonseparated, nonvortical flow about the foll. The viscosity of
the fluid is primarily the cause of the appearance of frictional resist-
ance which 1s represented by the sum of the horizontal components of the
forces tangential to the surface of the foil. Moreover, the viscosity
brings about a general change in the potential flow &bout the wing. To
these changes must be ascribed the formation of the boundary layer and
the appearance of circulatory motions. Because of these changes in the
flow, there is a change in the initial pressure distribution over the
wing such that a frontal pressure resistance sppears. The pressure
resistance, together with the frictional resistance, is termed the form
resistance. For wings of finite span the form resistance is divided into
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the profile and induced resistances. As has already been said at the
beginning of this paper, in the motion of a wing in an infinite flow the
fluid may be consldered as weightless and the Reynolds law of motion will
then be valid. For the total frontal resistance of the wing the Reynolds
law of motion gives the formula

R = C pSVZ

where the resistance coefficient Cy 1s a functicn of the shape of the
foil, its position in the flow, and the Reynolds number. The similitude
law of Reynolds consists of the following: If two wings are geometrically
similar and their similar elements are inclined by equal angles to the
direction of motion, and if the Reynolds numbers are equal, then there is
complete similarity of the motions. In this case the drag coefficients
for the two wings are the same. The values of the resistance coefficients
of the wing for the different angles of attack are obtained from model
tests In the wind tunnel, the tests belng conducted at some single value
of the Reynolds number near full scale. This is sufficilent for the reason
that at large angles of attack the drag coefficient depends little on the
Reynolds number, while at small angles of attack when the flow is poten-
tial and the resistance is practically only the frictional drag, a cor-
rection for the change in the Reynolds number may be made by the known
formulas for the resistance of a flat plate. It is understood, of

course, that test results are entirely applicable when the foil model

is tested for different values of the Reynolds number.

The motion of a wing in a real fluid near its free surface is now
considered. Total frontal resistance of the foll is represented as the
sum of three resistances: frictional, pressure, and wave resistances,
although, generally speaking, such decomposition must not be made. It
would be more correct to combine the pressure and wave resistances into
one since they are similar in character; that is, they are brought about
by the forces normal to the surface of the foil. Such formal decomposi-
tion must be considered, however, because of the absence at the present
time of a solutlon of the problem of the motion of a foil near a free
surface of a heavy real fluid. The manner in which the form resistance,
that is, the pressure and frictional resistance considered apart from the
wave reslistance, varies in the transition of the foil from an infinite
flow to the region near a free surface must be studied. The distribution
of the streamlines changes and the velocity of the flow about the foil
will be different. These changes in the flow give rise to changes in the
frictional and pressure resistances; that is, it 1s necessary to take into
account the fact that the dependence of the form resistance coefficient
on the Reynolds number will be different from the corresponding relation
for the motion of the same foil in an infinite flow. In reference to the
nonvalidity of the separation of the wave reslstance from the pressure
resistance, there 1s no experimental possibility of separating these two
resistances from each other and thereby obtalning the dependence of the
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form resistance coefficient on the Reynolds number. On the basis of all
that has been sald there remains only the possibility of assuming that
the coefficient of form resistance is the same as in the motion of the
foil at infinite depth as it i1s at finite depth (of course, for the same

- Reynolds numbers) and that its dependence on the Reynolds number is in

both cases expressed by the same law.

It can be said that the wave resistance arises from only the force
of gravity and vanishes with lncreasing depth although the fluid continues
to remain viscous. In a viscous, incompressible, heavy but infinite
f1luid, waves behind the moving foll cannot arise because their formation
necessitates two layers of fluid of different densities. The viscosity
will not be considered as the damping factor of the wave motions, since
the motion of the wing in water where such damping may be practically
neglected is considred. In thils manpner the wave resistance of the foil
is assumed to not depend on the viscosity; and for determining the mag-~
nitude of the wave resistance, use 1s made of the theoretical formulas
obtained for the motion in an ideal fluid. For determining the over-all
frontal resistance of a hydrofcil of infinite span, it is necessary to
add to the wave resistance the form resistance, which is obtained from
aerodynamic wind tunnel tests on the wing, initially computed for infinite
span. If the data are available, corrections are made on the form resist-
ance thus obtained for different Reynolds numbers in tests on the foil in
a tunnel in relation to its motion in water.

Effect of the Finite Span of Hydrofoil

The finiteness of the span in its motion in an iInfinite fluid is
taken into account by applying the theory of bound and free vortices.
This theory was developed by L. Prandtl. The basis for this theory is
the theorem of Joukowsky on the 1lift force of a wlng applied to a wing
of finlte span and the theorem of Helmholtz on vortices. The physical
picture of the formation of vortices may be obtained from the following
considerations: In the presence of a 1lift force on the wing and there-
fore of a circulatory flow about it, there is a difference between the
pressures on the upper and lower surfaces of the wing. Hence, at the
tips of the wing the fluid will move from one surface onto the other in
the direction of lower pressure. This transition of the fluid, because
of its steady character, gives rise to the formation of a system of free
vortices. Since, according to the theorem of Helmholtz, the vortices
consist of the same particles of the fluld, the wing in 1ts motion leaves
behind it free vortices having a length equal to the path traversed by
the wing. By the theorem of Helmholtz, the vortices cannot break away
within the fluid; hence in the motion of the wing in an infinite flow the
vortices either travel on with their ends at infinity or adhere to each
other behind the wing to form closed systems. In the presence of a free
surface of the fluld, the vortices may support themselves on the free
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surface. The system of free vortices leads to the motion of the surround-
ing fluid and gives rise to a deflection or downwash of the flow approach-
ing the wing. The downwash decreases the actual angle of attack and de-
flects the 1ift force behind the perpendicular drawn to the true direction
of the motion of the wing. The projection of the 1ift force thus deflected
on the direction of motion is the induced resistance of the wing. It is
identical with the energy required to maintain the motion of the vortices.
For all practical cases of the motion of a wing, the free vortices may be
taken as half-filaments, that is, may be assumed as infinitely long, not-
withstanding the finite interval of time from the starting instant of the
motion. Actually, the velocity W induced by a segment of length c of
the free vortex at a point distant h from its forward end 1s expressed
by the formula

T c
We = : (35)
¢ 4rh /\/c2 + ha

If ¢ = », that is, the vortex 1s a half-filament, then

- L
Vo = 1 (36)

Set ¢ = nh and obtain the ratio W¢/Wg:

W
Z = (g")

o ™ A1 + nt

If, for example, n = 5, that is, if the length of the vortex is five times
as large as h, WC/WQ==O.98; that is, the velocity induced by a finite
vortex ¢f length c = Sh 1s 98 percent of the veloclty induced at the
same point by a half-filament. If the free vortex is supported on the
free surface, its final length may be assumed as equal to s half-filament,
since the point of support of the vortex remains in its place while the
wing moves; therefore the length of the vortex rapidly attains practically
an infinitely large value. The quantitative results of the theory of
induced resistance are based on the magnitude of the induced velocity due
to a straight vortex half-filament at any point of the surrounding fluid.
For an infinite flow this velocity is expressed by formula (36). For a
free vortex shed from the foil in its motion near a free surface, formula
(36) is no longer applicable because the usual circular distribution of
the streamlines sbout the vortex will be distorted by the presence of the
free surface, and the magnitude of the induced velocity at any point of
the fluid will therefore be other than in an infinite flow. The effect

of the finite span of a hydrofoil is now considered. For simplicity, the
wing of finite span is replaced by a horseshoe vortex which will consist
of the actual vortices satisfying the theorem of Helmholtz. The horseshoe
vortex moves near the free surface of the fluid. The resistance of the
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free vortex is determined by theoretical formula (34) and there remains
only to take into account the change in the flow about the principal
vortex produced by the presence of the two free-vortex filaments remaining

"behind the foll. By the theorem of Helmholtz the vortices consist of the

same particles of fluid, so that the free vortices do not follow behind
the foll; that is, they do not have the property of forward motion in the
direction of motion of the foil. If the effect of the free surface on
the velocity field about the free vortices behind the foil is accurately
taken into account, the problem will be a three-dimensional one. Wave
disturbances remain behind the foll, and, considering some cross section
of the free vortices in a plane perpendicular to the direction of motion
of the foll, the level of the liquid will fluctuate because of waves from
the foil. This wave motion will be neglected, however, and in considering
the section of the free vortices in the above-mentioned plane, it is
assumed that the foll doeg not leave behind it any wave disturbances; the
problem will thus be a two-dimensional one. Moreover, the vortices are
assumed to be stationary relative to the disturbed free surface. Each
vortex is, in fact, situated in the velocity field of the other vortex
and therefore they both have a tendency to move in a direction opposite
to the direction of the 1lift force. This motion will be neglected in the
same way 1t was in considering the flow downwash in aerodynamics. The
free vortex 1s then consldered as rigidly attached at the depth h under
the free surface of the fluid.

Depending on the strength of the vortex, there will exist two limit-
ing boundary condltions for the free surface of the fluid. For small
values of circulation, the first boundary condition, which consists of the
requirement that vertical velocities of the particles of the fluid on its
free surface be absent, is obtalned. In this case the free surface may be
replaced by a rigid wall and the effect of the free vortex, by the effect
of a palr of vortices of equal strength situated symmetrically with re-
spect tc the rigid wall and rotating in opposite directions. For large
values of circulation, the second boundary condition, which consists of
the requirement that horizontal velocities on the free surface be absent,
is obtained. In this case the effect of the free vortex may be replaced
by the effect of a vortex pair of equal strength situated symmetrically
relative to the undisturbed free surface but rotating in the same direc-
tion. For the practical cases of motion of hydrofoils, the first boundary
condition is more nearly applicable; but we shall nevertheless present
both variants for taking into account the finiteness of the span in cor-
respondence with the two boundary conditions with a view toward evaluating
these variants in considering experimental data. The direct computation
of the velocity induced by the free vortex will be discussed next. The
characteristic stream function for a vortex pair of opposite rotation

‘located at the points

X=0, y= -1h and x= 0, y= ih

where x + iy = z, has the form
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r 1n z + hi

2xi 0z - hi (37)

The characteristic stream function for a vortex pair of the same direc-
tion of rotation located at the same points is

r

I 2 2
= 57 In(z* + h®) (38)

w2
Consider the point of the fluid lying at the distance h from the
level of the undisturbed free surface with abscissa x and find the
velocity induced by the half vortex at this point. For this purpose the
well-known relation

-%E:u-iv (39)

is used, where u 1s the horizontal velocity of the particles of the
fluid, and v 1is the vertical velocity of the particles.

Applying this preceding relation to formulas (37) and (38) gives
the corresponding vertical velocities induced by the half vortices:

T [1 X
=% (¥ R 4h2> (20)
r <? X >
Vo = — | = + 55— (41)
2
47 \X XZ + 4h2

In the case of the infinite flow, that is, for h = «, the expression
V = I'/anx
would be obtained in place of expressions (40) and (41).

Consider the foil at depth h with two free vortices trailing from
its edges. Let the span of the foil be equal to 1. In order to avoid
obtaining, in the further computation, an infinitely large mean induced
velocity over the foil span, 1t is necessary to assume that the distance
between the free vortices 1' > 1. On the basis of equations (40) and
(41), the mean value of the induced velocity over the wing span is

obtained:

11 + 1 2 2 2
_ T 1n 1 e } 1n "+ 17+ 21; + 4h' (42)
2 t2 + 4h
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where

t‘w= —g (h")

The minus sign refers to the first variant and the plus sign, to the
second variant for taking into account the effect of the finite span.

It is known from tests that for the majority of foils,

Zl+'L~ .
—_ = s 1
In 21 3 4 | (1 )
whence
t & 0.0251 (")

Moreover, in the numerator of the second term of expression (42) the
magnitude £2 may be neglected because of its smallness. Then

. 2 2
Vg = e [é ¥ % n +221t +24h:] (43)
t2 + 4h

Replacing t by 0.025 1 in expression (43) and introducing the
chord of the foil b, the ratio k = b/h, and the aspect ratio A\ = Z/b
give the final expression for the mean induced velocity over the foill

span

2.2
Vg = 20|15 f i ROSNE b2 (44)
nl 0.000625 k% + 4

For an infinite flow, the induced velocity is computed by the
formula :

Vm = 21"/:12.

The downwash angle of the flow B4y and the induced drag Cip
(coefficient of induced drag) can now be readily found according to the
physical sense of the downwash angle and the coefficient of induced drag

to be

VIIl

where V, 1is the velocity of motion of the foil. Hence, on the basis of
expression (44) for the mean induced velocity, the expressions for the
downwash angle and induced drag of the foil moving at depth h from the
free surface are found to be
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20 2.2
yh 1 1.05A2k2 + 4
Bin = 1¥%¥=1n (45)
- A 8 7 0.00062502k2 + 4
20, 2 2.2
¢y = il % 1n _1:05% k2 ; 4 (46)
A 0.000625X\°K" + 4

As seen from formulas (45) and (46), the angle of downwash and the
induced drag of an underwater foll are either smaller or greater than the
values of these magnitudes in the motion of a foil in an infinite flow
depending upon the vortex scheme applied - either a vortex pair of oppo-
site direction of rotation or one of the same direction of rotation. On

figure 13 have been constructed the curves Bih/Biw = £f(h/b) for A = 6
for the two variants under consideration. The same curves represent, of
course, also the relation

o= 1) @)

To reduce the computation of the angle of downwash and the induced
drag of a hydrofoil according to formulas (45) and (46), these formulas

are rewritten in the form

2¢
h -
Bip = —o (1 7 &) (452)
2
2¢C
n
Cin = My (L 5&) (462)
where
2.2
€=-é:ln 1.05)3°k% + 4 (46b)

0.000625X%k% + 4

On figure 14 the magnitude & has been constructed as a function of
the product Ak = 1/h. The use of this curve in the computation is clear

from formulas (45a) and (46a).

Next, the relative error incurred if the usual formulas are used for
determining the downwash angle and the induced drag of a hydrovane, with
no account taken of the effect of the free surface on the magnitude of
the induced velocity, will be obtained. For this purpose the following

table is used:
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b/h=0.5 | b/h=1.0 |b/h= 2.0
I Method | IT I |IT I {Ix
s s 1wl s | =l
15 11 33 | 20 67 | 29
33 20 67 | 29 93 | 32
52 25 | 111 (34 190 | 40

For the various aspect ratios of the wing A and ratio of wing
chord to depth, the relative error is computed in percent for the down-
wash angle and the induced drag of the hydrofoil, using in place of
formulas (45) and (46) the aerodynamic formulas. As may be seen, the
relative error may attain a large value at large values of b/h, that is,
near the free surface. The relative error increases with increasing A
but the absolute values of the angle of downwash and the induced drag
decrease, and therefore the absolute error decreases with increasing A.
In considering the problem of accounting for the finiteness of the span
of the hydrofoil, the following should be added: The downwash angle and
the induced drag of hydrofoils must, as a rule, be determined by formulas
(45) and (46) because the aerodynamic formulas would give a considerable
error even for submersions equal to twice the chord of the wing. Such
depth of submersion is already equal to the maximum suitable for use.
Before anything can be sald 1n regard to the final choice of boundary
condition on the free surface determining the direction of rotation of a
fictitious vortex, the experimental results must be considered. A com-
putational example of a hydrofoil will be given also.

TANK TEST ON A HYDROFOIL

In 1935 tests were conducted by A. N. Vliadimirov and V. G. Frolov at
the CAHT tank on a plane underwater foll. The object of the test was to
obtain the hydrodynamic characteristics of the foll at various submersions
with a view toward mounting this foll on a seaplane. A thin symmetrical
NACA 0.0009 profile of rectangular plan form having a chord b = 0.14
meter, span 1 = 0.84 meter, and therefore aspect ratio X = 6 was tested.
The thickness of the foil was 9 percent of the chord. On figure 15 are
given the coordinates of this profile taken from the mentioned report.

On figure 16 are given the aerodynamic characteristics of the profile
obtained in the high pressure wind tunnel for a value of Reynolds number
of 3.2x106, whereby A and R are denoted, as everywhere below,

A= CypSV2 and R = CxpSVZ. For the tests in the tank the foil of the
given dimensions was constructed of kolchugaluminum (an aluminum alloy)
and was supported by two steel brackets which at their bases were fitted
into the body of the folil from above, being attached to them by counter-
sunk rivets and having at the places of Jjuncture with the surface of the
folil a smooth form. The scheme of arrangement of the brackets on the
foil is shown in figure 17. The test was conducted on a special apparatus
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which permitted measuring the 1ift and the frontal resistance of the foil
with the brackets. The moment due to the hydrodynamic forces was not
measured. The test setup is given on figure 18. The upper hinge axis
of the vertical frame of the apparatus had one degree of freedom, that
is, it could be displaced over an arc of sufficiently large radius. The
impossibllity of the deflection of the vertical frame toward one side was
secured by a special device. For this reason the foil, being itself at
constant angle of attack, that is, immovably connected with the vertical
frame, had two degrees of freedom. The angle of attack of the foll was
determined with an accuracy up to +8 minutes. The required depth of
submersion of the folil was first approximately determined at standstill
and in motion was measured with an accuracy up to +1 millimeter. By the
depth of submersion of the foil 1s meant the distance of the geometric
center of the foil from the level of the undisturbed free surface. The
total frontal resistance of the foil with the submerged part of the
brackets was measured by a contact dynamometer of the Gebers system. To
the drum of this dynamometer was attached the towing rope, care beilng
taken that the rope was always horizontal during the motion. Since the
vertical frame was subjected to pressure from the air stream, this part
of the resistance was experimentally taken into account. The hydrodynamic
1ift force of the foil was measured by a spring dynamometer with an
accuracy up to +1 kilogram. For this purpose cne measurement was made at
standstill, that is, the load on the foll (weight of the structure) was
determined, and another measurement was made during motion. The differ-
ence between the values of these measurements gave the magnitude of the
1ift force of the foll. The box on the vertical frame shown 1n the
sketch was intended for the loads in the case where the positive lift
(force directed upward) exceeded the weight of the structure. The length
of the towing rope was so regulated that the axis of the principal frame
of the apparatus occupied a vertical position. In the test setup used
there was only one position of the foil when its center of pressure was
displaced away from the vertical. The 1lift force was then somewhat de-
flected and therefore gave an additional resistance, which was taken into
account by a special correction. The frontal resistance of the hydrofcil
without support brackets was determined as the difference between the
measured resistance of the foil with the brackets and the resistance of
the brackets. The resistance of the brackets was computed by the formula
R = CXpSVZ, and Cx was determined from the air polars since the brackets
constituted aeronautical profiles. The area S of the brackets was a
function of the depth of submersion of the foil. It was assumed that
there was no interference effect between the foil and the brackets. Since
a wave remained after each test, an interval was required between the
tests during which the surface of the water regained i1ts calm.

The basic tests were conducted at constant towing velocity V = 6
meters per second. The depth of submersion of the foil was varied over
a range from zero to the chord of the foil, and angle of attack was var-
ied from -18° to +18°. For small submersions the tests were restricted
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to small angles of attack in order to maintain as far as possible complete
submersion of the foil. Since the actual towing velocity for each test
differed from V = 6 meters per second with a deviation up to 0.2 meter

- per sécond iln either direction, all values of the 1ift force and resist-

ance of the folil obtained in the measurements were recomputed for V = 8
meters per second on the assumption that in the interval of deviation of
the veloclty the hydrodynamic forces acting on the foil were proportional
to the square of the velocity. Positive angle of attack was assumed in
the usual sense of this term. For example, at an angle of attack of +12°
the 1ift of the foil is directed upward; at -12° it is directed downward.
In addition to tests at constant velocity, curves were obtained for the
1lift and drag of the foil as functions of the velocity for two different
submersions hl and hs . The angle of attack was here taken as constant

and equal to 49, and the velocity was varied in the range from 2 to 12
meters per second in Z-meter-per-second increments. All tests were con-
ducted for constant submersion of the foll, that is, for each run the
amount by which the load exceeded the 1ift was determined and the raising
or submersion of the foil during the motion occurred only within the
limits of the compression or extension of the springs of the dynamometer
measuring the 1ift. The results of the tests on the hydrofoll are pre-
sented in the figures. On figures 19 and 20 are constructed the curves of
the 1ift force A (in kg) and frontal drag R (in kg) of the hydrofoil
as a function of the depth of submersion h (in mm) for various angles of
attack o for constant towing velocity V = 6 meters per second. On
figure 21 are constructed the curves of hydrodynamic efficlency of the
hydrofoil as a function of the depth of submersion for two angles of
attack o = +4° and o = -4°. In this case, too, the towing velocity
was constant (V = 6 m/sec). On figures 22 and 23 are constructed the
curves of the 1ift force A (in kg) and frontal resistance R (in kg) of
the hydrofoll as a function of the towing velocity for two different
submersions hj = 41 and hp = 82 millimeters. The angle of attack was
here constant and equal to 4°. For the present, an analysis of the
experimental data obtained is not of concern, and the characteristic
features of the constructed curves will not be explained; the discussion
will be restricted to the presentation of the data. A comparison will
subsequently be presented of the theoretical and experimental data, and
it will then be easier to note the laws which govern the hydrodynemics

of a hydrofoil. :

The data obtained from the tank tests on the hydrofoil were valuable
in that they brought out with particular clearness the effect of the most
important factor, namely, the depth of submersion. The fact that the
test was made on a thin symmetrical profile was a favorable circumstance.
As a result, the conditions of the test very closely approached those for
which the problem was theoretically solved. These favorable conditions
were obtained in other tests on hydrofoils. For example, in the tank at
Dumbarton (ref. 13), tests were conducted on a series of profiles for the
scale effect, a part of the profiles being tested in & vertical position
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-and g part in a horizontal. The chord of the profiles tested in the
horizontal position was equal to 16 centimeters and the submersion was
constant at 60 centimeters, almost four times as large as the chord.

The tests on the profiles under the free surface of water were in gen-
eral repeated several times for the purpose of investigating the per-
formance of propellers. The free surface of the water was, however, a
necessity only in that it was unavoidable, and attempts were made to go
as far as possible below the surface. In the present tests, however, an
attempt was made to gpproach nearer the surface, and for this reason the
possibllity existed of clarifying the effect of the free surface and of
comparing the experimental results with the theoretical.

HYDRODYNAMIC COMPUTATION PROCEDURE FOR THE HYDROFOIL

The first step is to recompute the air polars of the hydrofoil pro-
file from finite to infinite span. On figure 24 are shown the curves of
the 1lift coefficient of the foil for A = 6 and the recomputed values
for A= ». The foil of infinite span has no induced drag so that the
profile drag of the foll for A = « is obtained from the total drag for
A = 6 with the induced drag subtracted. After proceeding to the motion
of the foll in a plane-parallel flow, the foll is transferred from the
air to the water for, at first, infinitely great depth. There is a change
in Reynolds number which, in agreement with a preceding section, must be
taken into account. The air polar was obtained for a value Re = 3.2x106.

In the water there is first of all a change in the coefficient of
kinematic viscosity v¥. For a temperature of the tank t = 18° C,
v = 0.013 (cm?/sec). Since the foil chord b = 14 centimeters, the ve-
locity V = 600 centimeters per second is the following value for the
Reynolds number Re = Vb/y = 0.6x106,

The 1ift force of the foil is assumed not to change with the change
in Reynolds number, and only the profile drag and that part of the pro-
file which constitutes the friction drag are recomputed. The formula of
Prandtl for the frictional drag coefficient of plane surfaces is used for
this purpose (ref. 14). This formula includes the range of motion for
the Reynolds numbers under consideration. The formula of Prandtl is of

the form
_ 0.074 1700 (47)

T R

Recomputing by this formula the frictional drag of the foil gives
the curve of profile drag for water. In figure 25 are constructed the
profile drag curves for water and for air as functions of the angle of

attack.
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It should be remarked that the efficiency of the profile according
to wind tunnel test data at the Reynolds number Re = 3.2x106 was equal
to 23 at an angle of attack of 4°. The hydrodynamic efficiency of the

-+ same profile.for -the Reynolds number Re = 0.6x106 was -equal -to 18.2 as

a result of the increase in the profile drag.

It is interésting to note that if the coefficient of the frictional
drag of the foil is determined in its motion in air by formula (47), that
1s, for the same Reynolds number for which the ailr polar was obtalned,
then

100 Cp = 0.32

while the actual profile drag coefficient of the foil for zero angle of
attack is equal to

100 Cf = 0.40

as seen from figure 25.

The total drag of the foill in its motion in air at zero angle of
attack consists therefore of 80 percent frictional drag and 20 percent
pressure drag arising from the thickness of the foil. At the same time,
the value 100 Cp = 0.32 indicates the good agreement of the value of
C¢ obtained by the formula of Prandtl with the actual values and Justi-
fies the application of the Prandtl formula.

Since curves for the different towing velocities are still required,
the curve of the profile drag of the foil as a function of the velocity
in water at angle of attack of 4° has been constructed on figure 26.
After the first stage of the computation, the hydrodynamic forces acting
on a folil of infinite span movling in an infinite fluid are known.

It 1s now necessary to consider the motion of the foil when near the
surface of the water. For this motion waves are formed behind the foil,
the 1lift force of the foll changes, and a wave drag appears. The 1ift
coefficlent of a foll moving at depth h 1s obtained by means of the
formula

cyh = Cym(M - Na) (33)

and the graphs shown in figures 10 and 11. The value C,, entering the
formulas is taken from the curve for A = e shown in figure 24. The
coefficient of wave resistance of the foll is obtalned by means of the
formula
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- 2gh

a2 g _ vE
Cop = Yo o2 e (34)

and the curves constructed in filgure 12.

In the tank tests on the hydrofoil, the depth of submersion was var-
jed starting from zero. For comparison, however, the theoretical curves
were constructed for only the submersion starting from 50 millimeters,
since for smaller submersions formulas (33) and (34) will not give a
correct result because the term

(b/2n)°

and terms of higher degree were neglected in these formulas. The formulas
may therefore be used only for those values of b/2h which satisfy at
least the inequality

b/2h <1

Since the chord of the foil was b = 140 millimeters, the limiting case
obtained for which these formulas may still be considered as valid is for
a value of the submersion depth of

h= 70 mm

In the computations deviations are made from the value h = 70 milli-
meters by another 20 millimeters. A closer approach to the free surface
does not give anything even formally, since for this value M and N
approach infinitely large values. The hydrodynamic forces acting on a
foil of infinite span moving near the free surface of the water are now

known.

The finite span of the foll must be taken into account; the change
of 1ts 1ift force due to downwash and the value of the Induced drag are
determined. The correction for the finiteness of the span was made for
two variants corresponding to the two boundary conditions at the free
surface. For the first variant, in which the free surface 1s replaced by
a rigid wall, the downwash angle Bi is always less at finite depth
than the downwash angle for infinitely large depth. In both cases, of
course, the game 1ift force is considered. For the second variant, in
which the effect of the Pree surface is replaced by the effect of a vortex
pair rotating in the same direction, the downwash angle (i &at finite
depth is always greater than the corresponding angle at infinitely large
depth, agaln for the same 1ift forces.

The downwash angle behind the foll is found from the formula

2¢
Bin = ,tih (1 +&) (45a)
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and the curve on figure 14, where the magnitude & entering formula
(45a) has been constructed as a function of the product Ak. For the

. foll tested in the tank A= 6 and k = b/h ~depend on those depths h

for which computational data are to be obtained. For each depth of sub-
mersion h +there is a different downwash angle. The difference between
one variant and the other is the fact that for the same depth of submer-
sion of the foll, different values of the downwash angle are obtained.
Having, for a given depth h, the 1ift curve of a foil of infinite span
as a function of the angle of attack and knowing for this depth the mag-
nitude of the downwash angle it 1s easy to construct the curve of 1lift
force against the angle of attack for a foll of finite span, making use
for this purpose of the usual graphical methods applied in aerodynamics.
The computation is therefore individual for each depth.

The formula

zcyhz -
Cip = —5— (L ¥ %) (46a)

and the curve & = f£f(Ak) constructed in figure 14 are used to determine
the induced drag of the foil. The computation is agaln conducted for
each depth and, since the magnitude & entering the formula for Cin 1is
known, no difficulties are encountered. It is here likewise necessary to
make use of the graphical methods applied in aerodynamlcs. A comparison
of the thoretical curves with the experimentally obtained data will now
be made.

COMPARISON OF THECRETICAL AND EXPERIMENTAL RESULTS

The 1ift forces are considered first. On figure 27 are given the
theoretical curves for the 1lift force coefficients of the foil as a func-
tion of the submersion h in millimeters, and the test points are shown
in the same figure. All data were reduced to the velocity V = 6 meters
per second. There may first of all be observed the qualitative agreement.
The 1ift force of a hydrofoil at all angles of attack decreases 1n abso-
lute value with decrease in depth of submersion. A somewhat different
character is possessed by the curve for zero angle of attack where the
reverse phenomenon is indicated. Theoretically, for negative angles of
attack the 1ift force should be greater than for the positive in absolute
value, but this was not confirmed experimentally. In general, it must
be said that the quantitative agreement of the theoretical with the ex-
perimental results is better the smaller the angle of attack and the
larger the depth of submersion. This 1s understandable since the theo-
retical solution based on the linearized wave theory glves a better
gpproximation when the foll produces a small disturbance. Best agreement
of the results is given by the first variant (Bip < Bio) -
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Two theoretical curves and one experimental curve. for the constant
depth of submersion h = 82 millimeters and constant angle of attack 4°
are constructed on figure 28 for comparison; these curves show the effect
of the velocity of motion of the foil on its 1ift coefficient. From
theoretical considerations 1t follows that the 1lift coefficient of the
foll should increase with increasing velocity. The experimental curve
actually has this tendency; however, it is only weakly indicated. The
quantitative agreement very clearly speaks in favor of the first variant

(Bin< Bie) -

The data on the total drag of the hydrofoil are now compared. The
theoretical curves of the coefficients of total drag of the foll are
constructed as a function of the submersion h for the constant velocity
of motion V = 6 meters per second on figure 29, and on the same figure
are shown the test points. First noted is a characteristic feature of
the theoretical and experimental results, namely, the increase of the
drag coefficient of the foil with increase in depth of submersion. The
increase is ascribed to the increase in the induced drag of the foil
corresponding to the increase of its 1lift force with increased submersion.
It i8 seen that starting from a certain depth the increase in the drag is
discontinued and a drop begins as a result of the decreasing wave regist-
ance. That such 1s the case 1s clear from the mutual positions of the
curves and asymptotes. The guantitative agreement for positive angles of
attack is as before better the smaller the angle of attack and the greater
the depth of submersion. In comparing the drag for negative angles of
attack, the opposite result is obtained. From the theoretical curves, it

follows that

Cynla) < Cyn( )

which is explalned by the fact that theoretically the 1ift force is
greater for negative than for positive angles of attack, a fact which
gives rise to the corresponding Inequality in the induced drags. Experi-
ment shows, however, that

Cyn(a) > Cyup(-a)

In the given case the experimental data obtained are assumed to be cor-
rect and the following explanation 1is given:

First of all, it is assumed that in taking account of the finite
span the free surface is replaced by a solid wall. As has previously
been pointed out, the downwash angle then decreases with approach of the
foil (and therefore also the free vortices) to the surface; and for
h - 0, B4 &also +0. It was remarked also that the free vortices must
possess a motion directed opposite to the 1ift force. Hence, for nega-
tive angles of attack the free vortices moving upward may approach very
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near the free surface of the water and the downwash angle, and therefore
also the induced drag, will be very small. From this it follows that the
total drag.of. the hydrofoll for negative angles of attack will always be
less than for positive angles. There is, unfortunately, as yet, no math-
ematical theory of this problem, nor does the possibility exist, on the
basis of the above supposition, of finding the relation between the mag-
nitude of the downwash angle for negative angle of attack and the depth
of submersion of the foil.

On figure 30 are constructed two theoretical curves, and the test
points of the drag coefficients of the foil are plotted for a constant
submersion of the foil h = 82 millimeters and constant angle of attack
40, From these data it is possible to learn the effect of the velocity
of motion of the foll on its total drag coefficient. The theoretical
curves give a decrease In Cyp with increase in velocity and a sharp
increase in Cyp at small velocities. This is explained by the fact
that for small Froude numbers, the coefficients of wave drag sharply
increase. This was not confirmed experimentally. In the range of veloc-
ities starting from V = 6 meters per second and higher, good quantita-
tive agreement is observed between the experimental data and the theoret-
ical curve for the first variant (Bih < Bin) -

On figure 31 are given the theoretical curves of the hydrodynamic
efficiency of the hydrofoil as a function of the depth h for a = 4°
and velocity V = 6 meters per second. The test points are indicated
also. The position of the test points confirms the general character of
the theoretical curves. The quantitative agreement is better for the
curve of the first variant, as has already been observed for the curves
used as a basis for obtaining the curves of hydrodynamic efficiency.

On figure 32 the two diagrams are constructed so as to illustrate
clearly the relations and changes in the parts of the total drag of the
hydrofoll with change in depth of submersion of the wing. The curves
are theoretically constructed for angle of attack o = 4° and velocity
V = 6 meters per second.

CONCLUSIONS

The comparison here given between the experimental and theoretical
results of an investigation of the hydrodynamic forces acting on a hydro-
foll has shown that the theoretical solution based on the theory of small
waves gives an essentially correct representation of the phenomena occur-
ring in the actual motion. The agreement of the results is less favorable
with increase in angle of attack (in absolute value) and decrease in
depth of submersion.
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An attempt has been made in this paper to take into account approx-
imately the finite span of the hydrofoil. The proposed method of finding
the angle of downwash behind the hydrofoil is given simultaneously in two
variants. For the velocities of motion considered the more accurate
variant is that in which the free surface of the fluid 1s replaced by a
rigid wall.

The viscosity of the fluld is taken into account in the usual manner,
which is also approximate.

On the basis of the results obtalned, it may be saild that a reliable
hydrodynamic computation of a hydrofoil may be made for those conditions
of motion for which the absolute value of angle of attack is small and
the depth of submersion is not less than the chord of the hydrofoil.
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TABIE I. - VALUES OF M AND N FOR FORMUIA (33)

NACA TM 1341

v - b __V
kg_z_ F=l’??5 M N k= F—-Vng M N

o 0.998 0,100 oo 0,910 0,600

10.0 0.982 0.118 10.0 0.892 0.622

7.5 0.972 0,122 7.5 0.881 0.628

0.2 50 0,948 0,113 12 50 0.846 0.618
' 3.0 0.910 0.046 3,0 0,735 0.52
20 0.897 | —0.073 20 0,650 0.255

1.75 099 | —o,119 1.75 0,620 0,121

1.50 0933 | —0.159 1.50 0.594 | —0.037

[e's) 0,990 0,200 fe'e} 0.878 0.700

10.0 0.974 0,224 10,0 0.859 0.721

7.5 0,963 0,229 7.5 0,848 0.726

0.4 5.0 0.935 0.228 14 5,0 0.813 0.713
3.0 0.865 0.166 30 0,697 0,600

2,0 0.814 0.039 20 0.608 0.293

1.75 0806 | —0.027 1.75 0.579 0,132

1.50 0.808 | —0.001 1.50 0550 | —0,060

oo 0.978 0.300 oo 0.840 0,800
10.0 0.961 0.324 10,0 0,521 0.819°

75 0.948 0.331 | 7.5 0.810 0,824

06 50 0.913 0333 | |6 50 0.773 0.810
30 0.834 0.282 3,0 0.653 0,676

20 0.768 0.108 20 0,561 0.31s

175 0.748 0,025 1.75 0,522 0,135

1,50 0739 | —0.108 1,50 0495 | —0.117

o~ 0.960 0.400 oo 0,798 0.909

10,0 0.943 0.425 10,0 0,778 0917

7.5 0,930 0,431 75 0.767 0,919

08 5.0 0,900 0.430 1.8 50 0.7:30 0,897
3.0 0,804 0.379 3,0 0,605 0,752

20 0.730 0,171 20 0.509 0,341

1.75 0,704 0,092 1.75 0,471 0.131

1.50 0,684 0.003 1.50 0,439 —0.14

[='e) 0.9:38 0,500 e 0,750 1,000

10.0 0920 0.524 10,0 0,730 1,015

75 0,908 0,530 7.9 0,718 1.014

1.0 5.0 0.875 0.527 2.0 5.0 (),681 0.990
3.0 0.771 (.446 3 0,552 0.824

20 0.601 0216 20 0,401 0,368

1.75 0,662 0,111 1,75 0,412 0,130

1.50 0631 | —0.003 1.50 0375 | —0.206
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TABLE II. - VALUES OF Crpp/Cy2 FOR FORMULA (34)

———T
. 14

x| Tvm | S v | e | o
7.50 0.080 1.75 0935
5.00 0.161 0.6 1.50 1.042
4.00 0.226 1.29 1.840

3.00 0.314
2.50 0.354 7.50 0,086
02 2.23 0.363 800 0.188
2.00 0.354 400 0.285
1.75 0.316 3.00 0.476
1.50 0.236 2.50 0.646
1.20 0.100 200 0.900
0.80 0.003 0.8 1.75 1.070
1,50 1.253
7.50 0.084 LI12 1.450
5.00 0.178 0.90 1,280
4,00 0.264 0.70 0.805
3.00 0.416 0,60 0.414
2,50 0.530 0.50 0.110

2.00 0.660
0.4 1.75 0.712 750 0.086
1.58 0.725 5.00 0189
150 0.720 4,00 0.290
1.20 0.610 3.00 0.4%0
1.00 0.39%0 10 250 0.074
050 o151 2,00 0.960
0.60 0.010 75 1.162
N 1.50 1.403
7.50 0,085 1,00 1,815
500 0.184 0.60 1,840

4,00 0277
06 .00 0.456 ;(532 g’jz?
2,50 0,606 1,2 4.00 0.292
2,00 0811 3.00 0.500

41
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TABLE II. - Concluded. VALUES OF Cyp/Cy? FOR FORMULA (34)

j
=
2,50 0.691 7.50 0.087
2.00 1.000 5.00 0.193
1.2 1.75 1.228 * 4.00 0.298
1.50 1.510 3.00 0.515
091 2,170 2.50 0.723
7.50 0.087 18 900 1072
.00 0.191 1.75 1,340
100 0,294 1.50 1.710
0 0.505 0.74 3.260
2.50 0.705 0.50 217
2.00 1.032
1.75 1,275 7.50 0.087
1.4 150 1.590 5.00 0.143
1.00 2,430 4.00 0.298
0.84 2,540 3.0 0.517
0.70 2,320 250 0.7:30
0.60 1,860 200 1.0%)
0.50 1.190 1.75 1.365
0.40 0,400 1.50 1.750
7.50 0,087 20 1.20 2.400
5.00 0.193 1.00 3.020
4,00 0.296 0.80 3.560
3.00 0.510 0.70 3.630
6 2.50 0.715 0.60 3.440
2.00 1.057 0.50 2.660
1.75 .31 0.45 1.950
1.50 1.660 0,40 0.124
0.79 2.900 0.30 0.020
0.50 0.162
TABIE III. - VALUES OF £ FOR FORMULAS (45a) AND (46a)
e =717 13 Ak:TI 3
= 05 0,007 10 0413
1o 0.029 20 0,575
2.0 0.090 25 0,620
5.0 0252 40 0.670
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TABLE IV. - HYDRODYNAMIC CHARACTERISTICS OF HYDROFOIL MEASURED
IN TOWING TESTS

- Values of | Values of
©o PO vonfsee| hymm | s, deg| R, kgl &) kg (Bl |4 s
kg kg
o ==
1 6.07 +2 0 1.74 — 1.70 —
2 6.05 +2 —2 118 - 1.16 —
3 6,04 1 2 2.90 — 15 2.6 — 148
4 6,00 0 4 4,79 — 4 479 — 1
5 6,01 —5 8 4,60 24 9,60 24
6 6035 11 —2 2,38 — 40 2.33 — 396
7 6,05 11 0 1.52 — 19 1.49 — 1846
8 6.06 9 2 1.62 2 1.58 1,95
9 6.06 8 4 2.19 24 2.14 23,4
10 6,05 5 8 823 17 8,10 16,7
1 6.05 7 8 8.67 59 8,16 58
12 6,04 5 8 10,55 16 10,4 15.7
13 6,08 17 4 2.39 31 2,26 29,1
14 6.06 19 2 1.62 7 1,58 6.8
15 6.10 22 0 1.33 -1 1,28 — 10,6
6 605 22 —1 1.87 — 31 183 — 304
17 6,05 42 —2 1,76 — 23 1.78 — 225
18 6,06 41 ) 1.4 — 3 1,41 — 286
19 6,06 38 2 1.8 20 1.77 195
20 6.06 36 4 2.82 39 2,76 35
21 6,05 18 8 6.79 10 6,64 9.7
22 6.03 80 0 148 2 1.16 1,97
23 6.04 75 4 368 50 3,62 49,2
24 6,01 67 8 9.16 92 9,16 a1
25 595 58 12 27.41 121 27,5 123
26 5.94 58 16 41,28 121 42,0 121
27 5.94 51 17.5 44,85 116 156 118
28 593 59 14 37.33 151 38,2 134
29 6,01 85 — 4 2,60 — 11 2,49 — 138
30 6.01 87 — 8 6,62 — 89 6,62 — &8
3 5.94 82 —12 18.05 —137 18,1 --139
32 593 69 —16 38,61 —136 30,4 - 159
33 5.94 68 —18 37.54 — 38 — a7
34 5.98 83 —16.5 29,18 —167 19,2 — 168
35 6.22 83 —16.5 46,65 —181 44,2 —140.5
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TABIE IV. - Concluded. HYDRODYNAMIC CEARACTERISTICS OF HYDROFOIL
MEASURED IN TOWING TESTS
values of |[Values of
Point |V,m/sec| h, mn [a, deg| R,kg | &, kg |y.6ovscc, [V-earace,
kg kg

36 6.15 83 —16.5 46,55 —161 440 —1534
37 593 120 0 1,52 1,55 0

38 595 15 4 373 56 3,78 56,8
39 5.93 o7 8 10.33 108 10.40 109
40 6.00 9§ 12 29,38 146 29.38 146
41 595 91 16 4448 136 452 138
42 593 91 16 44,38 136 452 138
43 5.6 30 17.5 48.17 124 48.8 126
44 6.02 64 14 38.75 145 385 144

45 6.04 125 — 1 2.70 — 58 2,66 — 572
16 598 127 — 8 7.18 - 110 7.2 —111
47 597 125 —12 2100 —151 212 --153
18 6.00 11y --16 42.%6 —171 42,86 —17
0 6.02 112 2 54.80 —151 54.4 —150
50 6.08 150 0 1,72 0 1,67 0

51 603 142 4 3.88 59 3.82 58.4
52 6.04 137 8 10.80 113 10.6 111
53 6,01 127 12 30,56 143 30.4 142
54 6.04 121 16 46.70 138 46 136
55 308 123 17.5 50.33 132 50.6 133

56 6.04 155 — 4 2.80 — 54 276 — 532
57 6.09 156 — 3 7.68 —122 745 —118
58 6.00 154 —12 23.50 —106 235 —166
50 6.00 151 —16 1547 —174 45,47 —174
60 5.95 141 —18 5185 —173 52,6 —175
81 1,98 43 4 0.28 4 — -
62 4.05 30 4 1.25 17 — —
63 6.08 43 4 2.90 45 — —
64 8.05 41 4 4.83 ) — —
63 10.10 44 4 7.18 124 — —
66 12,12 35 4 9,80 165 - —
67 2,04 85 4 0,38 6 - —
68 112 §2 4 1.60 926 — —
69 6.15 81 4 337 60 — —
70 8.06 82 | 4 577 102 — —
71 10,20 85 4 841 155 — —
72 12,10 77 4 13,59 240 — —
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TABIE V.

- CHARACTER OF FLOW ABOUT HYDROFOIL IN TANK TESTS

Point § Condition of motion Remarks
Spray film from leading edge of foil
h=0, a=0°, in upward direction. Foil undergoes
1 V=6m/sec vertical vibration with amplitude of 2
millimeters.
h=0, o=-2° Spray film from leading edge inclined
2 V=6 m/sec somewhat backward. Vertical vibration
as under 1.
h=0, o=4° Spray film from lead%ng edge inclined
3 V=6,m/sec1 somewhat forward. Vibration of foil
discontinued.
h=11 um, a=—2°, From the leading edge of the foil a
6 V=6 m/sec film adhering to the upper surface
is formed.
From the trailing edge of the foil a
o film is formed having a horizontal
10 3?2 E?;egzs ’ direction. From the leading edge a film
- is formed making with the chord an angle
of 45° and forming a water arch over the
foil.
The flow about the foil is smooth, a
° vertical film being formed at each bracket.
5 h=17 mm, o=4-, This smooth character of the flow occurs in
1 V=6 m/sec all cases where the angle of attack is not
too large and the foll is submerged at a
sufficient depth.
h=58 mm, o=12°, Behind the foil there is a depression
25 V=6 m/sec which, after 3 meters, ends in turbulence.
Behind the foil there is a depression cov-
h=58 mm, a=16°, ered with jets rumning off the foil. At a
26 V=6 m/sec distance of about 1 meter the jets are trans-
parent and beyond that point have a foamy
structure.
From the middle of the foil over the entire
o span vortical filaments similar to systems of
27 h=51 mm, o=17.5", free vortices are formed. A group of such
V=6 u/sec vortices does not adhere strongly to the foil
and periodically breaks away, and in its place
new vortices are formed. ‘
From the lower surface of the foil (the low-
h=68 mm, o=-18° pressure surface), a vortex film periodically
33 V=6 m/sec breaks away as under 27. This phenomenon is
the cause of the vertical vibration of the
foil.
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TABLE V. - Concluded. CHARACTER OF FLOW ABOUT HYDROFOIL IN TANK TESTS

Point | Condition of motion Remarks
T e
Flow about the foil is smooth. Immediately
h=125 mm, . . R R R t
47 o=-12°, behind the foil a ridge is formed which a
V=6 m/sec approximately l% meters becomes a depression.
h=119 mm,
48 o=-16" , The same as under 47.
V=6 m/sec
h=112 mm Immediately behind the foil a ridge is formed
OL’_=_200 ? going over farther into a depression. Behind
49 V=6 m/séc the foll vortical filaments were observed
which, however, started not from the foil itself
but approximately 1 meter behind the foil.
h=137 mm, The flow about the foil is smooth. Immediately
52 a=8°, behind the foil is a shallow depression ending
V=6 m/sec in surf.
61 The flow about the foil is very smooth and the
to o=4° course is constant. A small vertical film is
T2 formed at each bracket.
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Figure 1. - Effect of ¥ = 2gh/VZ on lift
force of a cylinder without circulation.
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Figure 2. - Dependence of 1lift force
coefficient of a cylinder without
circulation on h/d and V/V2gd.
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Figure 3. - Dependence of wave drag coefficient of a cylinder

without circulation on d/h and v/V2gd.
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Figure 4. - Dependence of 1lift of a foil replaced
by a vortex on h/b and V/VZgb.
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Figure 5. - Dependence of wave drag coefficient
of a foil replaced by a vortex on b/h and V/VZg .
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Figure 6. - Dependence of 1lift and wave resistence of a cylinder with positive circulation
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Figure 8. - Effect of g = Zgh/V2 on f(¢) from formula (28a).
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Figure 9. - Polars of foil of infinite span moving in ideal fluid.
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Figure 13. - Dependence of Bih/Biw
from formulas (45) and (46) on h/b
for the two variants to account
for the finite span.
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Figure 15. - Coordinates of symmetrical profile NACA 0.0009.

x y x y
0.00 0.00 | 40.0 | + 435
1.25| + 1.420 | 50.0 | ¥ 3.971
2.50| F1.961 | 60.0 | F 3.423
5.00| ¥ 2.666 | 70.0 | F2.748
750 ¥3.150 | 80.0 | ¥ 1.967

10.0 | +3512| 90.0 | F1.086

150 | =4.009 | 950 | ¥ 0.605

200 | =4.303 | 100 | ¥ 0,09

950 | F 4.456 | 100 0.000

30.0 | + 4.501
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Figure 17. - Scheme of arrangement of supporting
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Instrument for measuring
depth of submersion of foil

Lever

To dynamometer-:

ey /‘Foi

Box for
weights

“

Figure 18. - Set-up for testing the hydrofoil in

tank.

NACA TM 1341

Instrument for measuring
1ift force

Instrument for measuring
angle of attack

rope bé_.__m{IPlace of attachment of steadying device



.

NACA TM 1341
*A, kg 22°
50 o AN p——
T R FS RS ‘ _8_. _V.-
%-/ N W7
L~ ° B
120 - 8
/l/
1
x
A
5
T W
* a1 NP
)
S N P
7 "q;- “““ - !
-~ 2°
of I~ e .
Y 5 %
NZ®
N2
k‘-,n _I/O
30 —l [s)
o]
\\
N
” -5
-100 N
b
\\~O
\‘\L
/2%
- /50 /]
\‘T {“
By ]
i D
—/6‘/ ’
_ 200 ||

Figure 19. - Dependence of 1lift of foil on depth
of submersion and angle of attach for V = 6
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Figure 20. - Dependence of total frontal drag of hydrofoil on depth
of submersion and angle of attack for V = 6 meters per second
(test data).




6l

NACA T™M 1341
4
R
o 4 (F <Y
e e 20 F - . .
= BN
/o
|
I
/
g 30 [ b, m
Figure 21. - Dependence of hydro-
dynamic efficiency of the
hydrofoil on depth of sub-
mersion for o = 4% and V = 6
meters per second. (test data).
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Figure 22. - Dependence of 1lift of hydrofoil on velocity
for o = 4° and for two depths of submersion (test

data).
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Figure 23. - Dependence of total frontal drag of hydrofoil on velocity for a = 4% and for two depths of submersion
(test data).
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Figure 30. - Comparison of experimental and theoretical
coefficients of total drag of a hydrofoil for o = 4° and
V = 6 meters per second.
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hydrodynamic efficiencies of a hydrofoil for a = 4° and
V = 6 meters per second.
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